Department of Experimental Physics
Home arrow Research
Monday, 25 September 2017
Main Menu
Home
News
Links
Search
Research
Research activities at the Department


Laboratory of Low Temperature Transport Measurements PDF Print E-mail

Laboratory of Low Temperature Transport Measurements

Personel:

Doc.RNDr. Michal Maheľ, CSc.
Prof.RNDr. Andrej Plecenik, DrSc.
Prof.RNDr. Peter Kúš, DrSc.
Mgr. Peter Schlosser

Rooms: F2-234


Current projects: 

Other succesfully realized projects:

Equipment:



Collaborations:

Photos:

PhotoPhoto
  Electrical transport measurements of micro and nanostructures at temperatures from 9K to 300 K at magnetic field up to 1 T


Photo
 AC susceptibility at temperatures down to 77 K


 

Laboratory of electron induced processes PDF Print E-mail

Laboratory of electron induced processes

Personel:
     Štefan Matejčík
     Peter Papp
     Juraj Orszagh
    

Students:
  Marián Danko

     Dušan Kubala
     Marek Kučera

    Electron attachment to the molecules of technological interest
    Dissociative electron attachment to the biologically relevant molecules
    Electron impact ionization of the hydrocarbons
    Electron induced fluorescence of molecules of technological and astrophysical interest

Electron attachment and electron ionisation laboratory web page


Electron induced fluorescence laboratory web page


Current projects:

EURATOM FUSION
APVV-0733-11 - Kinetics of electron and ion processes for fusion and technological plasmas
VEGA 1/0379/11 - Ionisation and excitation reactions for plasma diagnostics and applications
VEGA 1/0514/12  V-12-020-00 - Volume and surface processes in electric discharges  at atmospheric pressure




Former projects:

EIPAM - Electron induced processes at the molecular level
(http://www.isa.au.dk/networks/eipam/)

COST P9 action Radiation Damage in Biomolecular Systems (http://www.isa.au.dk/networks/cost/home.html)

ITS LEIF
(http://www.its-leif.org/main.htm)

EUROATM-FUSION projekt - Electron impact ionisation of small hydrocarbon molecules at high temperatures

IAEA project - Electron impact ionisation of small hydrocarbon molecules

VEGA project Nr. 1/1009/04 - Experimental studies of dissociative electron attachment to bromo-chloro hydrocarbons

APVT project Nr. 20-007504 - Comprehensive study of ionization reactions of electrons with molecules of technological and biological importance and their role in high pressure discharges


  Equipment:

Crossed beams apparatus


Collaborations:

Freie Universität Berlin, Germany
Leopold Franzens Universität Innsbruck, Austria
University Reykijavik, Iceland
Masarykova univerzita Brno, Czech Republic
Univezita Podlaska Siedlce, Poland
Russian Academy of Sciences Ufa, Russia


Laboratory of ion mobility spectroscopy PDF Print E-mail

Laboratory of ion mobility spectroscopy


Personel:
     Stefan Matejcik
     Martin Sabo
     Michal Stano
     Marek Kučera
    
 
  • ion and electron processes at atmospheric pressure
  • negative and positive mobility spectra of molecules in different gases
  • trace gas detection at atmospheric pressure

Current projects:
APVV-0733-11 - Kinetics of electron and ion processes for fusion and technological plasmas
VEGA 1/0379/11 - Ionisation and excitation reactions for plasma diagnostics and applications
VEGA 1/0514/12  V-12-020-00 - Volume and surface processes in electric discharges  at atmospheric pressure

Laboratory webpage

  Equipment:

    Corona discharge - Ion mobility spectrometer (IMS)
    Electrospray ionisation - IMS
    Ion mobility spectrometer - ortogonal acceleration Time of Flight spectrometer (oaTOF)


Collaborations:
    University Isfahan, Isfahan, Iran
    Taras Shevchenko University, Kyev, Ukrajine
Laboratory Of Corona And Surface Discharges Research PDF Print E-mail

Laboratory of corona and surface discharges research

Personel:
 Head of laboratory:
    Prof. RNDr. Mirko Černák, PhD.
Members of laboratory:
    Assoc. prof. RNDr. Anna Zahoranová, PhD.
    RNDr. Jozef Ráheľ, PhD.
    MSc. Dušan Kováčik
    MSc. Andrej Buček

PhD. Students:
    MSc. Mária Odrášková


FUNDAMENTAL research in the team focuses on experimental study and computer simulations of the following types of electrical discharges, which are generating atmospheric-pressure “cold” plasmas:
  1. Corona discharges: DC positive [1-4] and negative [5-9] corona discharges, pulsed positive corona discharges [2], pulsed surface corona discharges (Fig.1) [10-12].
  2. Barrier discharges: volume barrier discharges, surface barrier discharges [13-17] (see Fig.2) and coplanar surface barrier discharges [18,19] (see Figs.3(a)-(b), and Fig.4)
  3. Underwater electrical discharges: Pulsed positive underwater coronas [20], diaphragm discharge [21]





Since the treatment of a surface by atmospheric-pressure “cold” plasmas affects about 10 nanometers of the very surface layer, our APPLIED research concentrates on the applications of atmospheric-pressure “cold” plasmas to nano-technological problems, primarily in the polymer-processing [10,19,21], rubber [11,12], textile [13-16] (see Fig.5), car [14], and electronics industry [15].

Fundamental physical processes in the discharges are studied experimentally using sub-nanosecond measurements of the discharge electrical parameters, emission spectroscopy, and sub-nanosecond high-sensitivity optical measurements.

For the sub-nanosecond measurements of the discharge electrical parameters we are equipped by a set of HV and current probes, and fast digital oscilloscopes (i.e. Hewlett-Packard HP 54616B).

To study the atmospheric-pressure plasma geometry we are using a home-made CCD device (see Fig.6). Optical measurements of the discharge development with sub-manosecond time resoltion are made in collaboration with the International Laser Centre in Bratislava.

The spectroscopic measurements are realised in a close collaboration with the Dept. of Physical Electronics, Masaryk University, Brno and the Inst. of Plasma Physics, Prague.

The following power supplies are used to generate the above mentioned discharges and feed the plasma sources developed:

  • high-voltage (up to 100 kV) DC supplies
  • thyratron pulsed power supply (up to 30 kV)
  • pulsed HV (up to 60 kV) power supply with a rotating spark gap
  • RF HV power supplies with the power up to 1 kW

 


In the fields of fundamental study of the electrical discharge mechanism have a long-term collaboration with the following institutions:

  • Laboratoire de Génie Electrique, Université de Pau, France
  • Department of Physics,University of Greifswald, Germany
  • Department of Electrical and Computer Engineering, Plasma Sciences Laboratory, University of Tennessee, Knoxwille, USA
  • Dept. of Physical Electronics, Masaryk University, Brno, Czech Republic
In the field of plasma application we are collaborating with the following institutions:
  • TANDEC, Knoxwille, USA
  • Faculty of Electrical Engineering, Shizuoka University, Japan
  • MATADOR Co., Púchov. Slovak Republic
  • Research Inst. of Textile Chemistry, Žilina, Slovak Republic
  • REDA Tech, Bratislava, Slovak Republic
  • AHLSTROM Research Centre, Lyon, France
  • YKI, Stockholm, Sweden
  • Institute of Plasma Physics ASCR, Prague, Czech Republic
Important results:
  1. Theory of the physical mechanism for negative corona discharge formation
  2. Model of the formation and instabilities of high-pressure cathode region
  3. Development of several types of atmospheric pressure plasma sources. Some of them are already produced commercially.
  4. Patented constuction of a composite anode for generation of underwater corona discharge
  5. Patented technique for plasma activation of PES cords 

Current projects:


  
APVT - 013/2001
Novel plasma sources for environmentally friendly surface treatment of nonwoven fabrics
Project of slovak-american scientific-technical collaboration (2002-2005)
Head of project: Prof. RNDr. Mirko Černák, PhD.

VEGA - 1/1011/04
Unified model of electrical discharge formation at atmospheric pressure (2004-2006)
Head of project: Prof. RNDr. Mirko Černák, PhD.

APVT (APVV) – 20-033004
Study of atmospheric pressure plasma treatment of wooden surfaces
Head of project: Prof. RNDr. Mirko Černák, PhD.
Start of project: 2005

APVT (APVV) – 99-035004
Nanostructural modification of fibrous and textile materials
Head of project: Ing. Kabátová, VÚTCH – CHEMITEX, Žilina
Local supervisor: Prof. RNDr. Mirko Černák, PhD.
Start of project: 2005

Project of applied research AV – 4/0003/05
Low-temperature plasma sources for nano-technological adhesion modification of textile cords used in rubber industry
Head of project: Prof. RNDr. Mirko Černák, PhD.
Start of project: 2005

APVT (APVV) – 20/01505
Prototype device for continuous plasma activation of narrow thin webs
Head of project: RNDr. Anna Zahoranová, PhD
Start of project: 2005

References:
  1. Černák M., Hosokawa T., and Inoshima M.:"Positive-streamer- like phemonema in short corona gaps", Appl. Phys. Letters 57(1990)339.
  2. Černák M., van Veldhuizen E.M., Morva I., Rutgers W.R.:"Effect of cathode surface properties on glow-to-arc transition in a short positive corona gap in ambient air", J.Phys.D: Appl. Phys.28(1995) 1126-32.
  3. Odrobina I., Černák M.:"Numerical simulation of streamer-cathode interaction" J.Appl. Phys. 78(1995)3635-42.
  4. A. Zahoranová, M. Štefečka, M. Černák, V. Šurda: Prebreakdown positive corona streamers and the streamer-cathode contact in hydrogen, Czech. J. Phys. 49(1999) 941 - 956.
  5. Černák M. and Hosokawa T.:"Complex form of current pulses in negative corona discharges" Phys. Rev. A 43(1991)1107.
  6. Černák M., Hosokawa T., and Odrobina I.:"Experimental confirmation of positive-streamer-like mechanism for negative corona curent pulse rise" J. Phys.D: Appl. Phys. 26(1993)607.
  7. Černák M., T. Hosokawa, S. Kobayashi, T. Kaneda "Streamer mechanism for negative corona current pulses" J. Appl. Phys. 83 (1998)5678-90.
  8. A.Zahoranová, J. Kúdelčík, J. Paillol, and M. Černák: Ionization and electron emission processes active in negative corona current pulse in N2-SF6 mixturesJ. Phys. D: Appl. Phys. 35 (2002), 762-769.
  9. A. Zahoranova, J. Kúdelčík, M. Šimor, M. Černák:“Mechanism for negative corona current pulses in CO2-SF6 mixtures“ J. Phys. D 36 (2003) L39-L41
  10. Štefecka M., Rahel J., Černák M., I. Hudec, M. Mikula, M. Mazur:"Atmospheric-pressure plasma treatment of ultralight molecular weight polyethylene fibers" Journal of Materials Science Letters 18 (1999) 2007.
  11. Štefecka M., Rahel J., I. Hudec, P. Janypka, M. Černák., M. Kando: "Atmospheric-pressure plasma treatment of polyester monofilaments for rubber reinforcement" Journal of Materials Science Letters 19 (2000) 1869.
  12. M. Černák, J. Ráhel, I.Hudec, M. Štefečka, M. Kando, I.Chodák: Surface modification of polyester monofilaments by atmospheric-pressure plasma“, Plasmas and Polymers 5(2000)119
  13. J.Rahel, M. Šimor, M. Černák, M. Štefečka, Y. Imahori, M. Kando: Hydrophilization of polypropylene nonwoven fabric using surface barrier discharge. Surface and Coating Technology 169 (2003) 604-609
  14. E.G. Finantu-Dinu, B.T. Kim, M. Černák, A. Schwabedissen and J. Engemann: "Improving the wettability of chromium coated plates by atmospheric air plasma treatment" Surface and Coating Technology 174 (2003) 553-558
  15. M. Šimor, J. Rahel ,M. Černák,Y. Imahori, M. Štefečka, and M. Kando:”Atmospheric-pressure plasma treatment of polyester nonwoven fabrics for electroless metal plating” Surface and Coating Technology 172/1 (2003)1 – 6
  16. M. Šimor, J. Rahel, P. Vojtek, A. Brablec, M. Černák:”Atmospheric-pressure diffuse coplanar surface discharge for surface treatments” Appl. Phys. Lett. 81(2002) 2716-2718
  17. Rahel' J, Šimor M, Černák M, Štefečka M, Imahori Y, Kando M:”Hydrophilization of polypropylene nonwoven fabric using surface barrier discharge” 169 (2003)604-608
  18. M. Šimor, J. Rahel, P. Vojtek, A. Brablec, M. Černák:”Atmospheric-pressure diffuse coplanar surface discharge for surface treatments” Appl. Phys. Lett. 81(2002) 2716-2718.
  19. M. Černák, J. Rahel, D.Kovacik, M. Šimor, A. Brablec, P. Slavicek: “ Generation of Thin Surface Plasma Layers for Atmospheric-Pressure Surface Treatments“ Contrib. Plasma Phys. 44 (2004) 504 – 507.
  20. Šunka P., Babický V., Člupek M., Lukeš P., Šimek M., Schmidt J., Černák M.:"Generation of chemically active species by electrical discharges in water", Plasma Sources Sci.Technol. 8 (1999)258.
  21. A. Brablec, P. Slavíček, P. Stahel, T. Cizmar, D. Trunec, M. Šimor, M. Černák: “Underwater pulse electrical diaphragm discharge for surface treatment of fibrous polymeric materials” Czech. J. Phys, 52 (2002), Suppl. D, pp. 491-500.
Laboratory of Coherent Optics PDF Print E-mail

Laboratory of Coherent Optics


Personel: 
     Dagmar Senderáková
     Anton Štrba
     Vladimír Mesároš
     Tibor Opálek
    
Room:  F2 - 144


- holographic recording
- holographic interferometry
- optical information processing - utilisation of holography
- laser diode modules - degree of coherence, improvement


Current projects:

    No.SOP ĽZ 2005/1-101 "Innovative approaches to motivate the youth to study natural science" (FNS, FMPI)


  Other successfully realised projects:

    Nonlinear optical elements for photonic devices, VEGA, No. 1/0255/03 (01 03 - 12 05)
    Laser induced structures for optical information processing, VEGA, No.1/7655/20 (01 00 - 12 02)
    Optical elements for ultra-fast demultiplexers, VEGA, No. 95/5195/130 (12 95 – 12 98)


  Equipment:

    Basic holographic equipment
    He-He lasers
    Laser diode modules
    Polarisation interference microscope


Collaborations:
    Princeton University, USA
    Institute of Physics, Slovak Academy of Science
    University in Žilina
    KVANT, s.r.o.

Photos:



Holographic record, the object, the reconstruction




Visibility of interferograms depends on the coherence of interfering waves



Holographic interferometry




Interferogram of an optical fibre



Laser diode module




<< Start < Previous 1 2 3 4 Next > End >>

Results 19 - 27 of 33
 

Mambo is Free Software released under the GNU/GPL License.
Design by Mamboteam.com | Powered by Mambobanner.de